Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.548
Filtrar
1.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513778

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Assuntos
Proteínas Quinases Ativadas por AMP , Amidinas , Medicamentos de Ervas Chinesas , Animais , Peixe-Zebra , Estresse Oxidativo , Fadiga/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Antioxidantes , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Int J Med Mushrooms ; 26(3): 67-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505904

RESUMO

Five kinds of exopolysaccharides (EPS) were obtained by fermentation of Scleroderma areolatum Ehrenb. with sucrose, glucose, maltose, lactose, and fructose as carbon sources. Antioxidant abilities of the obtained EPSs were evaluated by inhibiting AAPH, HO·, and glutathione (GS·) induced oxidation of DNA and quenching 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS· and galvinoxyl radicals. The effects of carbon sources on the antioxidant properties of EPSs could be examined. The results showed that five EPSs can effectively inhibit radicals induced oxidation of DNA, and the thiobarbituric acid reactive substances (TBARS) percentages were 44.7%-80.8%, 52.3%-77.5%, and 44.7%-73.3% in inhibiting AAPH, HO·, and GS· induced oxidation of DNA, respectively. All five EPSs could scavenge ABTS· and galvinoxyh, and exhibit superior activity in scavenging free radicals. Antioxidant abilities of EPS with fructose as carbon source were highest among five EPS.


Assuntos
Amidinas , Antioxidantes , Basidiomycota , Benzotiazóis , Carbono , Ácidos Sulfônicos , Antioxidantes/farmacologia , Antioxidantes/química , DNA/química , Frutose , Sequestradores de Radicais Livres/farmacologia
3.
BMC Complement Med Ther ; 24(1): 75, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310207

RESUMO

BACKGROUND: Butea superba Roxb. (B. superba), is an herbal plant traditionally used for rejuvenation. Additionally, there have been reports on its antioxidant properties. Low-density lipoproteins (LDL) oxidation is the leading cause of cardiovascular diseases (CVDs). Natural products with antioxidant properties have the potential to inhibit LDL oxidation. However, no work has been done about the anti-isolated human LDL oxidation of B. superba extract (BSE). This study aimed to investigate the antioxidant potential of BSE and its ability to prevent isolated human (LDL) oxidation induced by free radical agents. METHODS: The antioxidant properties were investigated by antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), ferric reducing ability power (FRAP), nitric oxide (NO) and peroxynitrite scavenging assay. More so, anti-isolated human LDL oxidation activities were evaluated by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and 3-morpholinosydnonimine hydrochloride (SIN-1) induced LDL oxidation assay. RESULTS: BSE exhibited a significant (p < 0.05) antioxidant activity in all the test systems, demonstrating its potential as a potent free radical scavenger. It displayed scavenging effects on DPPH (p < 0.05; IC50 = 487.67 ± 21.94 µg/ml), ABTS (p < 0.05; IC50 = 30.83 ± 1.29 µg/ml). Furthermore, it generated significantly (p < 0.05) increased antioxidant capacity in a dose-dependent manner in FRAP assay and exhibited significantly (p < 0.01) higher percent NO scavenging activity than gallic acid. Besides, BSE at 62.5 µg/ml exhibited a considerable percent peroxynitrite scavenging of 71.40 ± 6.59% after a 2 h period. Moreover, BSE demonstrated anti-isolated human LDL oxidation activity induced by AAPH and SIN-1 (p < 0.05) and revealed scavenging activity similar to ascorbic acid (p > 0.05). Identifying the main constituents of BSE revealed the presence of genistein, daidzein, and biochanin A through Liquid Chromatography-Mass Spectrometer/Mass Spectrometer (LC-MS/MS) analysis. CONCLUSION: This is the first report that the presence of isoflavones in BSE could play an important role in its antioxidation and isolated human LDL oxidation scavenging properties. These findings suggest the potential for developing antioxidant herbal supplements. However, further studies must be investigated, including efficacious and safe human dosages.


Assuntos
Amidinas , Antioxidantes , Benzotiazóis , Butea , Ácidos Sulfônicos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Butea/química , Cromatografia Líquida , Ácido Peroxinitroso , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Óxido Nítrico , Radicais Livres
4.
Cell Physiol Biochem ; 58(1): 63-82, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374715

RESUMO

BACKGROUND/AIMS: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear. METHODS: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs. RESULTS: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>. CONCLUSION: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.


Assuntos
Células Endoteliais , Desiminases de Arginina em Proteínas , Proteínas Proto-Oncogênicas c-akt , Humanos , Células Endoteliais/metabolismo , Histonas/metabolismo , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amidinas/química , Amidinas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia
5.
Environ Toxicol Pharmacol ; 106: 104388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355029

RESUMO

Embryonic development is exceptionally susceptible to pathogenic, chemistry and mechanical stressors as they can disrupt homeostasis, causing damage and impacted viability. Oxidative stress has the capacity to induce alterations and reshape the environment. However, the specific impacts of these oxidative stress-induced damages in the gastrointestinal tract of Drosophila melanogaster larvae have been minimally explored. This study used 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH), a free radical generator, to investigate oxidative stress effects on Drosophila embryo development. The results showed that exposing Drosophila eggs to 30 mM AAPH during 1st instar larva, 2nd instar larva and 3rd instar larva stages significantly reduced hatching rates and pupal generation. It increased the activity of antioxidant enzymes and increased oxidative damage to proteins and MDA content, indicating severe oxidative stress. Morphological changes in 3rd individuals included decreased brush borders in enterocytes and reduced lipid vacuoles in trophocytes, essential fat bodies for insect metabolism. Immunostaining revealed elevated cleaved caspase 3, an apoptosis marker. This evidence validates the impact of oxidative stress toxicity and cell apoptosis following exposure, offering insights into comprehending the chemically induced effects of oxidative stress by AAPH on animal development.


Assuntos
Drosophila melanogaster , Estresse Oxidativo , Humanos , Animais , Larva , Amidinas
6.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423659

RESUMO

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Assuntos
Amidinas , Antineoplásicos , Indanos , Leucemia , Humanos , Citarabina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Poliaminas , Metionina/farmacologia , Metionina/metabolismo , Leucemia/tratamento farmacológico
7.
J Comp Neurol ; 532(2): e25584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341648

RESUMO

The trigeminal nerve is the sensory afferent of the orofacial regions and divided into three major branches. Cell bodies of the trigeminal nerve lie in the trigeminal ganglion and are surrounded by satellite cells. There is a close interaction between ganglion cells via satellite cells, but the function is not fully understood. In the present study, we clarified the ganglion cells' three-dimensional (3D) localization, which is essential to understand the functions of cell-cell interactions in the trigeminal ganglion. Fast blue was injected into 12 sites of the rat orofacial regions, and ganglion cells were retrogradely labeled. The labeled trigeminal ganglia were cleared by modified 3DISCO, imaged with confocal laser-scanning microscopy, and reconstructed in 3D. Histograms of the major axes of the fast blue-positive somata revealed that the peak major axes of the cells innervating the skin/mucosa were smaller than those of cells innervating the deep structures. Ganglion cells innervating the ophthalmic, maxillary, and mandibular divisions were distributed in the anterodorsal, central, and posterolateral portions of the trigeminal ganglion, respectively, with considerable overlap in the border region. The intermingling in the distribution of ganglion cells within each division was also high, in particular, within the mandibular division. Specifically, intermingling was observed in combinations of tongue and masseter/temporal muscles, maxillary/mandibular molars and masseter/temporal muscles, and tongue and mandibular molars. Double retrograde labeling confirmed that some ganglion cells innervating these combinations were closely apposed. Our data provide essential information for understanding the function of ganglion cell-cell interactions via satellite cells.


Assuntos
Amidinas , Gânglio Trigeminal , Nervo Trigêmeo , Ratos , Animais , Gânglio Trigeminal/fisiologia , Neurônios , Neurônios Aferentes
8.
Theranostics ; 14(4): 1615-1630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389848

RESUMO

Rationale: Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known. Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. Trigeminal TRPV1 channel and MrgprA3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain. Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition. Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.


Assuntos
Amidinas , Dermatite , Ácidos Hidroxieicosatetraenoicos , Proteínas Proto-Oncogênicas B-raf , Humanos , Animais , Capsaicina/farmacologia , Prurido , Dor , Doença Crônica , Modelos Animais de Doenças , Canais de Cátion TRPV
9.
Medicine (Baltimore) ; 103(8): e37015, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394536

RESUMO

BACKGROUND: Peptidyl (protein) arginine deiminases (PADs) provide the transformation of peptidyl arginine to peptidyl citrulline in the presence of calcium with posttranslational modification. The dysregulated PAD activity plays an important role on too many diseases including also the cancer. In this study, it has been aimed to determine the potential cytotoxic and apoptotic activity of chlorine-amidine (Cl-amidine) which is a PAD inhibitor and whose effectiveness has been shown in vitro and in vivo studies recently on human glioblastoma cell line Uppsala 87 malignant glioma (U-87 MG) forming an in vitro model for the glioblastoma multiforme (GBM) which is the most aggressive and has the highest mortality among the brain tumors. METHODS: In the study, the antiproliferative and apoptotic effects of Cl-amidine on GBM cancer model were investigated. The antiproliferative effects of Cl-amidine on U-87 MG cells were determined by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate method at the 24th and 48th hours. The apoptotic effects were analyzed by Annexin V and Propidium iodide staining, caspase-3 activation, and mitochondrial membrane polarization (5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide) methods in the flow cytometry. RESULTS: It has been determined that Cl-amidine exhibits notable antiproliferative properties on U-87 MG cell line in a time and concentration-dependent manner, as determined through the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate assay. Assessment of apoptotic effects via Annexin V and Propidium iodide staining and 5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide methods has revealed significant efficacy, particularly following a 24-hour exposure period. It has been observed that Cl-amidine induces apoptosis in cells by enhancing mitochondrial depolarization, independently of caspase-3 activation. Furthermore, regarding its impact on healthy cells, it has been demonstrated that Cl-amidine shows lower cytotoxic effects when compared to carmustine, an important therapeutic agent for glioblastoma. CONCLUSION: The findings of this study have shown that Cl-amidine exhibits significant potential as an anticancer agent in the treatment of GBM. This conclusion is based on its noteworthy antiproliferative and apoptotic effects observed in U-87 MG cells, as well as its reduced cytotoxicity toward healthy cells in comparison to existing treatments. We propose that the antineoplastic properties of Cl-amidine should be further investigated through a broader spectrum of cancer cell types. Moreover, we believe that investigating the synergistic interactions of Cl-amidine with single or combination therapies holds promise for the discovery of novel anticancer agents.


Assuntos
Antineoplásicos , Glioblastoma , Nitrofenóis , Ornitina/análogos & derivados , Humanos , Cloro , Glioblastoma/metabolismo , Anexina A5 , Benzeno , Carbocianinas/farmacologia , Caspase 3/metabolismo , Iodetos/metabolismo , Iodetos/farmacologia , Propídio , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Amidinas/farmacologia , Arginina/metabolismo , Apoptose
10.
Org Biomol Chem ; 22(7): 1500-1513, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294067

RESUMO

Inspired by the pharmacological interest generated by 6-substituted purine roscovitine for cancer treatment, 5-aminoimidazole-4-carboxamidine precursors containing a cyanamide unit were prepared by condensation of 5-amino-N-cyanoimidazole-4-carbimidoyl cyanides with a wide range of primary amines. When these amidine precursors were combined with acids, a fast cascade cyclization occurred at room temperature, affording new 6,8-diaminopurines with the N-3 and N-6 substituents changed relatively to the original positions they occupied in the amidine and imidazole moieties of precursors. The efficacy and wide scope of this method was well demonstrated by an easy and affordable synthesis of 22 6,8-diaminopurines decorated with a wide diversity of substituents at the N-3 and N-6 positions of the purine ring. Preliminary in silico and in vitro assessments of these 22 compounds were carried out and the results showed that 13 of these tested compounds not only exhibited IC50 values between 1.4 and 7.5 µM against the colorectal cancer cell line HCT116 but also showed better binding energies than known inhibitors in docking studies with different cancer-related target proteins. In addition, good harmonization observed between in silico and in vitro results strengthens and validates this preliminary evaluation, suggesting that these novel entities are good candidates for further studies as new anticancer agents.


Assuntos
Antineoplásicos , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Ciclização , Imidazóis/farmacologia , Purinas/farmacologia , Amidinas/farmacologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
11.
J Pharmacol Exp Ther ; 388(2): 724-738, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38129129

RESUMO

Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.


Assuntos
Epilepsia , Ferroptose , Soman , Ratos , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Soman/toxicidade , Epilepsia/tratamento farmacológico , Encéfalo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Imageamento por Ressonância Magnética , Ferritinas/farmacologia , Ferro , Benzilaminas/farmacologia , Amidinas/farmacologia , Amidinas/uso terapêutico , Óxido Nítrico/metabolismo
12.
Cell Commun Signal ; 21(1): 250, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735678

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) promote neuroinflammation and, thus, central nervous system (CNS) disease progression. However, it remains unclear whether CNS-associated NETs affect pain outcomes. A fasting-mimicking diet (FMD) alleviates neurological disorders by attenuating neuroinflammation and promoting nerve regeneration. Hence, in this study, we explore the role of NETs in the CNS during acute pain and investigate the role of FMD in inhibiting NETs and relieving pain. METHODS: The inflammatory pain model was established by injecting complete Freund's adjuvant (CFA) into the hind paw of mice. The FMD diet regimen was performed during the perioperative period. PAD4 siRNA or CI-amidine (PAD4 inhibitor) was used to inhibit the formation of NETs. Monoamine oxidase-B (MAO-B) knockdown occurred by AAV-GFAP-shRNA or AAV-hSyn-shRNA or was inhibited by selegiline (an MAO-B inhibitor). The changes in NETs, neuroinflammation, and related signaling pathways were examined by western blot, immunofluorescence, ELISA, and flow cytometry. RESULTS: In the acute phase of inflammatory pain, NETs accumulate in the spinal cords of mice. This is associated with exacerbated neuroinflammation. Meanwhile, inhibition of NETs formation alleviates allodynia and neuroinflammation in CFA mice. FMD inhibits NETs production and alleviates inflammatory pain, which is enhanced by treatment with the NETs inhibitor CI-amidine, and reversed by treatment with the NETs inducer phorbol 12-myristate 13-acetate (PMA). Mechanistically, the neutrophil-recruiting pathway MAO-B/5-hydroxyindoleacetic acid (5-HIAA) / G-protein-coupled receptor 35 (GPR35) and NETs-inducing pathway MAO-B/ Reactive oxygen species (ROS) are significantly upregulated during the development of inflammatory pain. MAO-B is largely expressed in astrocytes and neurons in the spinal cords of CFA mice. However, knockdown or inhibition of MAO-B effectively attenuates CFA-induced inflammatory pain, NETs formation, and neuroinflammation in the spinal cord. Moreover, within rescue experiments, MAO-B inhibitors synergistically enhance FMD-induced pain relief, NETs inhibition, and neuroinflammation attenuation, whereas supplementation with MAO-B downstream molecules (i.e., 5-HIAA and PMA) abolished this effect. CONCLUSIONS: Neutrophil-released NETs in the spinal cord contribute to pain development. FMD inhibits NETs formation and NETs-induced neuroinflammation by inhibiting the MAO-B/5-HIAA/GPR35 and MAO-B/ROS pathways in astrocytes and neurons, thereby relieving pain progression. Video Abstract.


Assuntos
Armadilhas Extracelulares , Doenças Neuroinflamatórias , Animais , Camundongos , Ácido Hidroxi-Indolacético , Espécies Reativas de Oxigênio , Jejum , Dieta , Dor , Medula Espinal , Amidinas , Receptores Acoplados a Proteínas G
13.
J Mol Graph Model ; 124: 108559, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542757

RESUMO

Herein, we investigated the stability of lead halide perovskites under ambient conditions after mixing the two cations Formamidinium (FA) and Cesium (Cs). The CsxFA1-xPbI3 perovskites solutions were prepared with different contents of x (0.0, 0.3, 0.5, 0.7 and 1.0) and deposited on substrates by spin-coating technique. The CsxFA1-xPbI3 films were, afterwards, characterized using the X-ray diffraction (XRD), UV-visible spectroscopy, photoluminescence (PL) spectra and scanning electron microscopy (SEM) to figure out their crystallinity, morphology, and optical properties. We noticed a stable perovskite structure for the mixed compounds unalike the pure FA and Cs films. The XRD analysis revealed, even after two weeks, the growth and good stability after two weeks of the desired black cubic α-phase perovskite structure in opposite to FAPbI3 and CsPbI3 which, respectively, showed faster degradation and transition into non-perovskite δ-phase and É£-phase no perovskite phases. The mixed perovskites Cs-FA also displayed a high absorbance especially for the ones with 30% of Cs and 70% of FA or 50% of each, with an excellent band gap energy ranging between 1.52 and 1.7 eV where FAPbI3 and CsPbI3 were showing a bandgap between 1.5 and 1.9 eV respectively. Moreover, the performance of the CsxFA1-xPbI3 based solar cells were simulated with SCAPS by using the band gaps obtained from the experimental study and after by varying the band gap, the thickness of the absorber layers and then different types of Electron Transport Layer (ETL). The simulation results revealed that the Cs0.3FA0.7PbI3 based solar cells had the highest higher efficiency around 22.36%.


Assuntos
Compostos de Cálcio , Compostos Inorgânicos , Amidinas , Césio
14.
J Org Chem ; 88(13): 8379-8386, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37312277

RESUMO

Efficient access to the synthesis of lactam-derived quinoline through a bicyclic amidine-triggered cyclization reaction from readily prepared o-alkynylisocyanobenzenes has been developed. The reaction was initiated by nucleophilic attack of the bicyclic amidines to o-alkynylisocyanobenzenes, subsequently with intramolecular cyclization to produce a DBU-quinoline-based amidinium salt, followed by hydrolysis to afford the lactam-derived quinoline in moderate to good yields.


Assuntos
Lactamas , Quinolinas , Ciclização , Amidinas , Hidrólise
15.
ChemMedChem ; 18(18): e202300261, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376962

RESUMO

Novel benzo[b]thienyl- and 2,2'-bithienyl-derived benzothiazoles and benzimidazoles were synthesized to study their antiproliferative and antitrypanosomal activities in vitro. Specifically, we assessed the impact that amidine group substitutions and the type of thiophene backbone have on biological activity. In general, the benzothiazole derivatives were more active than their benzimidazole analogs as both antiproliferative and antitrypanosomal agents. The 2,2'-bithienyl-substituted benzothiazoles with unsubstituted and 2-imidazolinyl amidine showed the most potent antitrypanosomal activity, and the greatest selectivity was observed for the benzimidazole derivatives bearing isopropyl, unsubstituted and 2-imidazolinyl amidine. The 2,2'-bithiophene derivatives showed most selective antiproliferative activity. Whereas the all 2,2'-bithienyl-substituted benzothiazoles were selectively active against lung carcinoma, the benzimidazoles were selective against cervical carcinoma cells. The compounds with an unsubstituted amidine group also produced strong antiproliferative effects. The more pronounced antiproliferative activity of the benzothiazole derivatives was attributed to different cytotoxicity mechanisms. Cell cycle analysis, and DNA binding experiments provide evidence that the benzimidazoles target DNA, whereas the benzothiazoles have a different cellular target because they are localized in the cytoplasm and do not interact with DNA.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Antineoplásicos/química , Linhagem Celular Tumoral , Benzotiazóis/química , DNA/metabolismo , Benzimidazóis/química , Amidinas/farmacologia , Amidinas/química , Relação Estrutura-Atividade , Proliferação de Células
16.
Dalton Trans ; 52(25): 8540-8548, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37000490

RESUMO

In chemotherapy, the search for ruthenium compounds as alternatives to platinum compounds is proposed because of their unique properties. However, the geometry effect of ruthenium complexes is sparely investigated. In this paper, we report the synthesis of a series of bis(acetylacetonato)ruthenium(III) complexes bearing two amidines (1-) in a cis configuration. These complexes are highly cytotoxic against various cancer cell lines, including a cisplatin-resistant cell line. In vitro studies suggested that the representative complex can induce cell cycle G0/G1 phase arrest, decrease the mitochondrial membrane potential, elevate the intracellular reactive oxygen species level, and cause DNA damage and caspase-mediated mitochondrial pathway apoptosis in NCI-H460 cells. In vivo, it can effectively inhibit tumor xenograft growth in nude mouse models with no body weight loss. In combination with the reported trans-bis(amidine)ruthenium(III) complexes, we found that ruthenium(III) bis(amidine) complexes could be cytotoxic in both trans and cis geometries, which is in contrast to platinum-based compounds.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Camundongos , Animais , Humanos , Rutênio/farmacologia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Pontos de Checagem do Ciclo Celular , Amidinas , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Apoptose
17.
Eur J Med Chem ; 248: 115112, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641860

RESUMO

Triple negative breast cancer (TNBC) is a specific breast cancer subtype, and poor prognosis is associated to this tumour when it is in the metastatic form. The overexpression of the inducible Nitric Oxide Synthase (iNOS) is considered a predictor of poor outcome in TNBC patients, and this enzyme is reported as a valuable molecular target to compromise TNBC progression. In this work, new amidines containing a benzenesulfonamide group were designed and synthesized as selective iNOS inhibitors. An in vitro biological evaluation was performed to assess compounds activity against both the inducible and constitutive NOSs. The most interesting compounds 1b and 2b were evaluated on MDA-MB-231 cells as antiproliferative agents, and 1b capability to counteract cell migration was also studied. Finally, an in-depth docking study was performed to shed light on the observed potency and selectivity of action of the most promising compounds.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico Sintase Tipo II , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Amidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
18.
Nat Mater ; 22(1): 73-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456873

RESUMO

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Assuntos
Amidinas , Luz Solar , Cátions , Dimetil Sulfóxido
19.
J Am Chem Soc ; 144(49): 22397-22402, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36469014

RESUMO

Amidines are a structural surrogate for peptide bonds, yet have received considerably little attention in peptides due to limitations in existing methods to access them. The synthetic strategy developed in this study represents the first robust and general procedure for the introduction of amidines into the peptide backbone. We exploit and further develop the utility and efficiency of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. This work is significant because it describes a generally applicable path to access unexplored peptide designs and architectures for new therapeutics made possible by the unique properties of amidines.


Assuntos
Amidinas , Peptídeos , Amidinas/química , Peptídeos/química
20.
J Org Chem ; 87(24): 16829-16846, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36461931

RESUMO

Despite the explosion of interest in heterocyclic azadienes, 1,2,3,5-tetrazines remain unexplored. Herein, the first general synthesis of this new class of heterocycles is disclosed. Its use in the preparation of a series of derivatives, and the first study of substituent effects on their cycloaddition reactivity, mode, and regioselectivity provide the foundation for future use. Their reactions with amidine, electron-rich, and strained dienophiles reveal unique fundamental reactivity patterns (4,6-dialkyl-1,2,3,5-tetrazines > 4,6-diaryl-1,2,3,5-tetrazines for amidines but slower with strained dienophiles), an exclusive C4/N1 mode of cycloaddition, and dominant alkyl versus aryl control on regioselectivity. An orthogonal reactivity of 1,2,3,5-tetrazines and the well-known isomeric 1,2,4,5-tetrazines is characterized, and detailed kinetic and mechanistic investigations of the remarkably fast reaction of 1,2,3,5-tetrazines with amidines, especially 4,6-dialkyl-1,2,3,5-tetrazines, established the mechanistic origins underlying the reactivity patterns and key features needed for future applications.


Assuntos
Compostos Heterocíclicos , Reação de Cicloadição , Elétrons , Cinética , Amidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...